DRAFT OF SLIDES (03/05/91)

STATISTICAL ANALYSIS OF DIOXIN AND FURAN MEASUREMENTS IN ENVIRONMENTAL SAMPLES FROM THE PULP AND PAPER INDUSTRY

Marla D. Smith and Henry D. Kahn Office of Water, EPA

and Kirk Cameron
SAIC

COOPERATIVE STUDY BETWEEN EPA AND PAPER INDUSTRY

All U.S. mills that bleach wood pulps with chlorine or chlorine derivatives (104 Mill Study)

Other studies show that chlorine bleaching is a source of dioxin and furan

Data collected included 2,3,7,8-TCDD and 2,3,7,8-TCDF concentrations in:

Effluent (treated or untreated wastewater)

Sludge (semi-solid residue from treatment system)

Pulp (fibers after conversion from wood chips)

Data collected in mid to late 1988

Industry managed the program

CONCLUSIONS

For	effluent,	sludge,	and	pulp	separately	y:
-----	-----------	---------	-----	------	------------	----

- 1. Detected values appear to be lognormally distributed
- Log-regression methods were appropriate in modeling non-detect measurements
- 3. Target detection levels are achievable
- 4. Analytical variability is relatively low
- 5. Variability due to combined field sampling and analytical error is relatively low

CONCLUSIONS (continued)

For combined outputs of effluent, sludge, and pulp:

- Greater chlorine use tends to increase TCDD and TCDF discharges
- 7. Increased chlorine dioxide substitution tends to decrease TCDD and TCDF discharges

RESPONSIBILITIES OF THE NATIONAL COUNCIL OF THE PAPER INDUSTRY FOR AIR AND STREAM IMPROVEMENT (NCASI)

Managed program for industry

Provided guidance to mills on sampling methods

Developed the laboratory analysis method (GC/MS)

Submitted samples to labs

Reviewed lab results

Forwarded results to EPA

DIFFERENCES BETWEEN NCASI AND EPA LAB ANALYSIS METHODS

NCASI Method 551

EPA Method 1613

Both high resolution GC/MS methods

NCASI 551 limited to 2,3,7,8-TCDD/TCDF

EPA 1613 designed for all 17 2,3,7,8-substituted PCDD/PCDFs

DATA

Each mill provided one sample of effluent, sludge, and pulp

400 samples of effluent, sludge, and pulp 5-day composite samples

80 additional samples for QA/QC

Process information corresponding to sampling dates

QA/QC information (recoveries and ion ratios)

TWO LABS PERFORMED ANALYSES

Wright State University pulp (80%)

Enseco-California Analytical Laboratories effluent (89%)

sludge (81%)

PRESENTATION'S EMPHASIS

Effluent

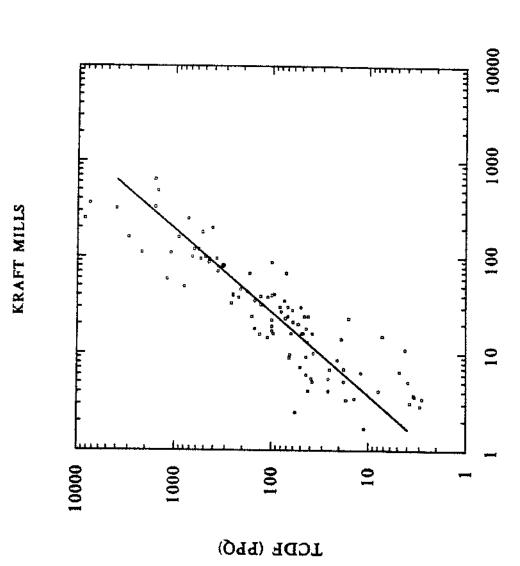
TCDD

Kraft mills

REASONS FOR FOCUSING ON EFFLUENT

Conclusions are similar for sludge and pulp

Confounding factors in sludge and pulp


Sludge samples hard to physically obtain

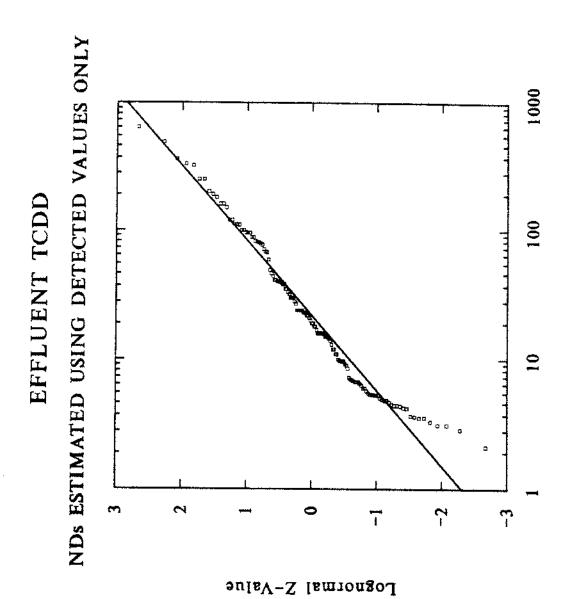
Pulp collected earlier in the process than effluent and sludge

Pulp sampled before drying process

TCDD (PPQ)

TCDD VS. TCDF: EFFLUENT SAMPLES

REASONS FOR FOCUSING ON KRAFT MILLS


Processes are different

Sulfite mills tend to produce less TCDD and TCDF

Different types of wastewater treatment

Difficulties with lab analysis of sulfite samples

.

TCDD Concentration in PPQ

TREATMENT OF NON-DETECT VALUES

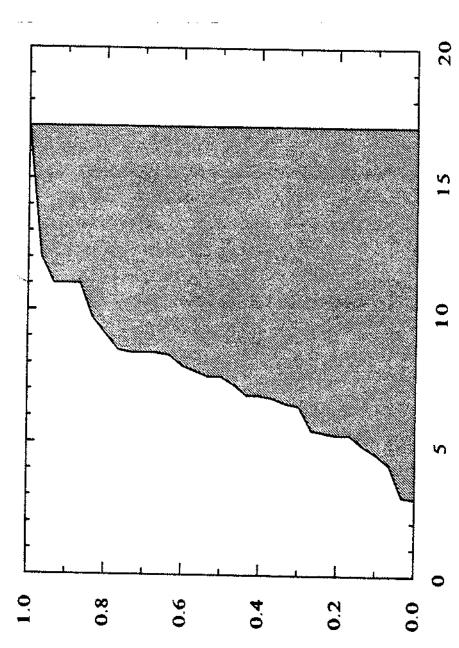
Sensitivity analyses: all methods about the same

Log-regression method best

28% of TCDD samples non-detect in effluent at kraft mills

All mills had detected concentrations of TCDD or TCDF in effluent, sludge, or pulp

TARGET DETECTION LEVEL


10 ppq for effluent

DETECTION LEVELS FOR NON-DETECT TCDD SAMPLES IN EFFLUENT

Number 30

	Concentration	
	(ppq)	
Minimum	3.0	
Maximum	17.0	
Mean	7.7	
Standard Dev.	2.8	
Median	7.5	

SAMPLE CUMULATIVE DISTRIBUTION GRAPH EFFLUENT TCDD DETECTION LEVELS 1.0

Cum. Proportion of Detection Levels

Conc. of 2.3.7.8-TCDD (in PPQ)

ANALYSIS OF DUPLICATE SAMPLES

•	# Samples	s # Mills	
Effluent	107	84	
Duplicates	34	15	
Laboratory	15	6	
Field	19	9	

2 - 3 duplicates from each mill having duplicates

Not all mills provided duplicate samples

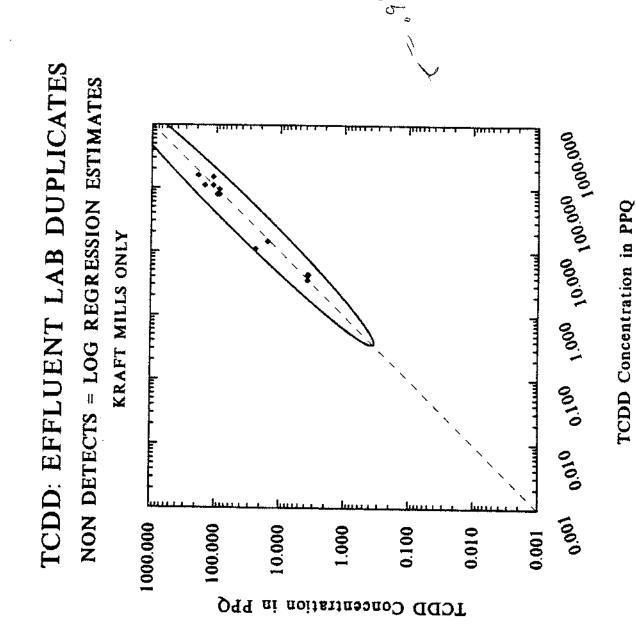
ESTIMATES PROVIDED BY ANALYSIS OF DUPLICATE SAMPLES:

Analytical variability
from laboratory duplicate samples

Combined variability due to field sampling and analytical error

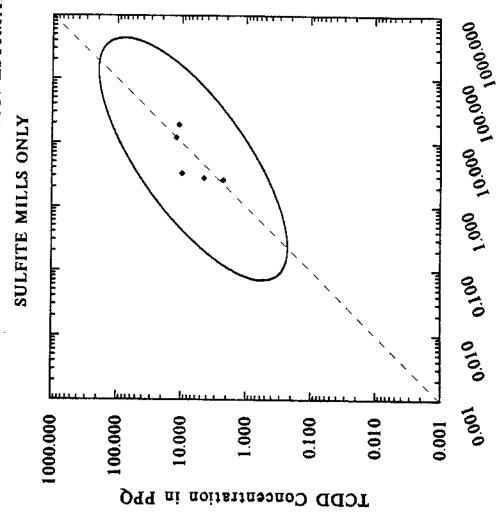
from field duplicate samples

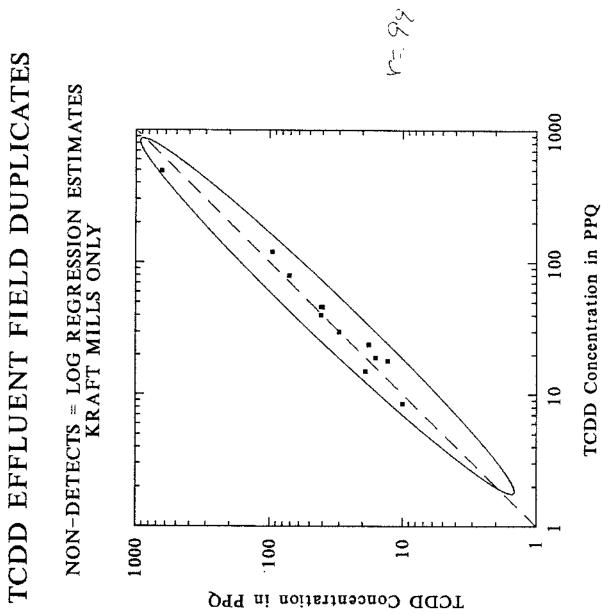
ESTIMATES NEEDED FOR:


Impact on averaging duplicates

Response to industry claims of high analytical variability

THE DATA DID NOT SUPPORT AN ANALYSIS OF:


Inter-lab variability


Separate estimate of field sampling variability

TCDD Concentration in PPQ

ANOVA RESULTS FOR EFFLUENT DUPLICATE SAMPLES FROM KRAFT MILLS

N SS1 SS1% SS2 SS2%

LAB DUPLICATES

Log₁₀(TCDD) 15 5.572 98.60 0.079 (1.40)

FIELD DUPLICATES

Log₁₀(TCDD) 19 4.754 99.20 0.038 (0.80)

SS1 = Between duplicate set sum of squares

SS2 = Within duplicate set sum of squares

CONCLUSIONS FROM ANALYSIS OF DUPLICATES

- 1. The duplicates could be averaged
- 2. Relatively low analytical variability
- Relatively low variability due to field sampling and analytical error
- Need to look elsewhere for variability
 (e.g., processes or plant management)

4

OTHER FACTORS INFLUENCING TCDD OUTPUT

Evaluated on basis of combined output from effluent, sludge, and pulp

Combined output adjusted for amount of pulp production by each mill

None of results are strong

Results tend to support industry working hypotheses

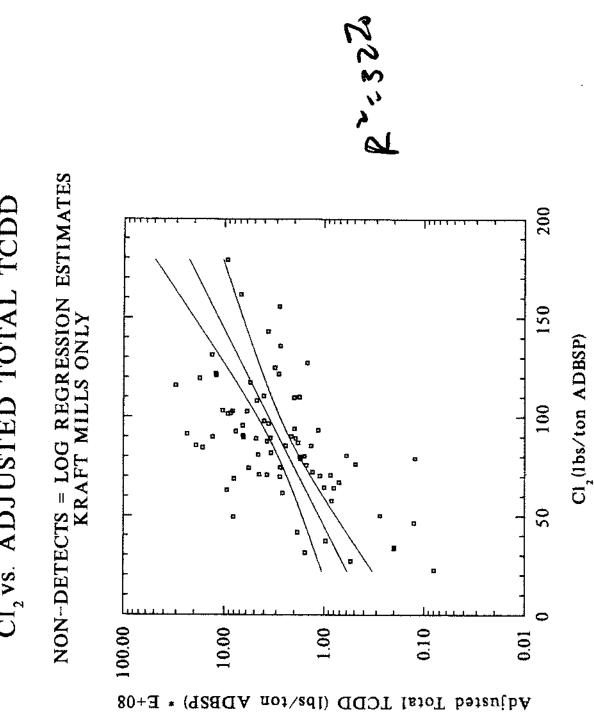
THREE FACTORS PRESENTED:

Chlorine usage

Chlorine dioxide substitution

Wood type used to produce the pulp

CHLORINE (Cl₂)


Used in bleaching to whiten pulp

Other studies show TCDD and TCDF produced mostly in chlorination stage

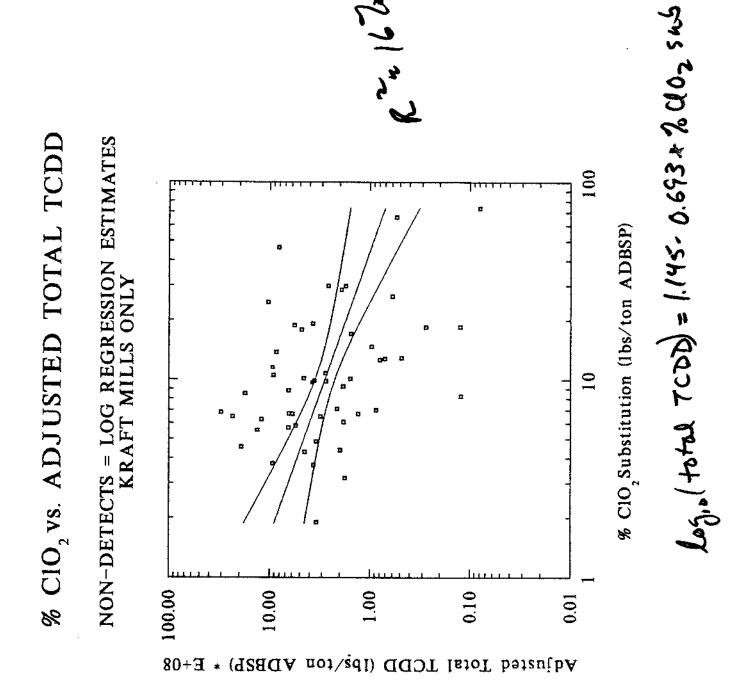
Weak positive relationship between chlorine use and TCDD

30% of variability in data

Problem with over-chlorination

logio (total 7002) = - 449+ .010* dz

CHLORINE DIOXIDE (ClO₂) SUBSTITUTION


Substituted for chlorine in bleaching process

Used to improve effluent quality and reduce TCDD and TCDF

Very few mills substituted more than 30%

Not all mills substituted

Accounts for 16% of variation in data

CONFOUNDING FACTORS BETWEEN Cl_2 and ClO_2

1. Order chemicals added

Adding chemicals in stages decreases TCDD and TCDF

Competition between two chemicals increases TCDD and TCDF

WOOD TYPES

Softwood (e.g., pine, spruce)

Hardwood (e.g., oak, maple)

More chlorine applied to softwood

Analysis found more TCDD and TCDF with softwood

WHAT'S NEXT?

Development of water pollution control regulations

Industry is changing to reduce TCDD and TCDF

EPA is sampling 16 - 19 mills

Long-term sampling planned at four mills

Detailed questionnaire mailed to all facilities
collects self-monitoring data and process information
preliminary analysis this fall

Regulation: limits for TCDD and TCDF